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A temporally staggered algorithm for advancing solutions of the two-fluid plasma model is
analyzed with von Neumann’s method and with differential approximation. The implicit
leapfrog algorithm [C.R. Sovinec et al., J. Phys. Conf. Series 16 (2005) 25–34] is found to
be numerically stable at arbitrarily large time-step when the advective, Hall, and gyrovis-
cous terms are temporally centered in their respective advances and the coefficient of the
semi-implicit operator meets the criterion found for basic hyperbolic systems. Numerical
instability with forward or backward differencing of advection is evident as an ill-posed
equation in the differential approximation for a simplified system. At large time-step,
the accuracy of the algorithm is comparable to that of the Crank–Nicolson method for all
plane waves except the parallel mode that is sensitive to the ion cyclotron resonance. An
implementation reproduces theoretical results on the transition from resistive magnetohy-
drodynamics to two-fluid reconnection in a sheared-slab linear tearing mode. A nonlinear
three-dimensional computation in toroidal geometry shows an increasing exponentiation
rate of kinetic energy as magnetic reconnection from an internal kink mode changes from
current-sheet to ‘X-point’ geometry.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Magnetohydrodynamics (MHD) is a useful starting point for studying the macroscopic stability of magnetized plasma.
Linear MHD calculations are used routinely to assess the free energy of particular configurations, and nonlinear simulations
provide insight into the consequences of instability, such as dynamo effects, relaxation, and partial or complete loss of stored
thermal energy. However, the MHD model is very limited as a description of plasma dynamics. It misses drift effects that are
important for low-frequency dynamics when particle gyro-orbits are not negligible [1]. In addition, macroscopic relaxation
requires magnetic topology change resulting from reconnection, and non-MHD electron dynamics release the magnetic
evolution from spatial scales associated with ions, thereby allowing fast reconnection [2–4]. Comprehensive simulation of
macroscopic plasma dynamics therefore requires these ‘two-fluid’ effects, plus kinetic effects for conditions with infrequent
collisions.

The differences between the two-fluid and MHD models that lead to new physical effects are also significant from the
computational perspective. Electron dynamics and ion magnetization represented by gyroviscosity lead to dispersive normal
modes [5,6], where the phase velocity of traveling waves at short-wavelength is faster than that of the long-wavelength
modes. For a given level of spatial resolution, a numerical computation with the two-fluid model has a greater range of
time-scales than a comparable MHD computation, and the increased stiffness makes implicit methods yet more important.
. All rights reserved.
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In addition, drift effects impose a preferred direction of propagation for each of the species, so macroscopic dynamics tend to
have complex frequencies. As a result, implicit methods for advancing the system of equations typically have matrices that
are not Hermitian, even when the matrices for comparable MHD algorithms are.

Several efforts [7–10] are investigating the time-centered Crank–Nicolson implicit method [11] for fluid-based plasma
models. Fully centered and other methods [12] with implicit nonlinear terms use Newton–Raphson iteration. There have
been significant advances with the advent of ‘matrix-free’ methods [13], where elements of the Jacobi matrix are not re-
quired if the linear systems are solved with Krylov-based iteration. Like most practical applications of iterative Krylov meth-
ods, preconditioning is essential, and an approximation of the Jacobi matrix is needed in this case. Whether the theoretical
advantage of nonlinear time-centered accuracy can be achieved in practice depends on the quality and efficiency of the
approximation. Thus, preconditioning is a focus of active research for these methods [14]. One beneficial aspect of magnetic
confinement applications is that nonlinear perturbations in regions of high temperature are much smaller than the back-
ground; otherwise, there would be no confinement. Thus, the stiffness from fast waves is largely a linear property.

Semi-implicit algorithms that selectively restrict the propagation of fast normal modes have proven successful for non-
linear multi-scale magnetohydrodynamics [15–18], and extensions for the two-fluid model have been considered [19–21].
Here, we investigate the numerical properties of an ‘implicit leapfrog’ algorithm [20] that staggers flow-velocity in time from
the other fields. The leapfrog label refers to temporal staggering of distinct parts of the system state that are numerically
analogous to coordinates and their canonical momenta in computations for a Hamiltonian system. The next state in a tem-
poral sequence only depends on the previous state, so the advance is a two-level scheme. This is in contrast with multi-level
leapfrog methods [22], such as midpoint, that may suffer numerical instability [23,24]. A practical advantage of staggering is
that it allows an implementation to advance each physical field separately, which reduces the sizes and condition numbers
of the matrices required for a given spatial representation. This feature and the semi-implicit operator for the advance of
flow velocity are in common with the semi-implicit MHD algorithms [15–18]. However, for numerical stability reasons,
advection is handled implicitly for each advance. In addition, the two-fluid Ohm’s law is time-centered during the advance
of magnetic field. This is in contrast to the semi-implicit styled magnetic advance that is presented in Ref. [19] and recon-
sidered below in Appendix A.

The primary findings of our analyses are that the time-staggered semi-implicit method for MHD can be extended to include
two-fluid effects when the two-fluid and advective terms are time-centered in the separate advances. The algorithm can be
made numerically stable for arbitrarily large time-step values and remains free of numerical dissipation. Dissipative physical
effects are represented by resistive dissipation in our analysis, which shows unconditional stability for centered and backward
differencing of this term. With centered dissipation, the algorithm is second-order accurate. Tests on plane waves show accu-
racy that is comparable to the Crank–Nicolson method at large time-step and wavenumber, except for the low-frequency par-
allel mode that is sensitive to the ion cyclotron resonance. Linear tearing mode benchmarks show that the algorithm
accurately reproduces transitions from MHD to two-fluid reconnection with temporal accuracy that is comparable to our
resistive MHD computations. An example nonlinear computation demonstrates two-fluid reconnection in toroidal geometry.

Our algorithm is detailed in Section 2 after presenting the two-fluid system of equations. In Section 3, we analyze the
numerical stability and accuracy for all plane-wave polarizations of the model using von Neumann’s method. For the general
case, the resulting dispersion relation is evaluated numerically. Insight on the effects of centering parameters for advection
and diffusion is developed with the method of differential approximation [25–27], also known as modified equation analysis
[28,29]. Benchmarking on two-fluid linear tearing modes and the example three-dimensional nonlinear application are pre-
sented in Section 4. Conclusions from the analysis and applications are drawn in Section 5.

2. System of equations and algorithm

All fluid-based models for high-temperature plasma are approximations. Closure of fluid equations is usually based on
dynamical spatial scales being much larger than the effective mean-free-path for particle scattering through collisions,
and that condition is violated in most magnetic confinement experiments. In addition, the most common Braginskii form
of the two-fluid equations [30] is derived with the assumption that flow speeds are of the order of the ion thermal speed.
Further assuming low frequency, such that quasineutrality (n � ne ffi ni) is satisfied and that displacement current is negli-
gible, and neglecting the electron thermal force, we arrive at the system considered here:
mn
@

@t
þ V � r
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@n
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where V is the center-of-mass flow velocity (essentially the ion flow velocity, since electron inertia is small for low-fre-
quency dynamics, and the effective particle mass m is approximately the ion mass mi). The magnetic induction B and
charge-current density J are related by the low-frequency Ampere’s law, Eq. (5). The system allows for separate electron
and ion temperatures (Ta, a=i, e) with conductive heat-flux vectors qa and sources Qa, and the pressure in the flow evolution
equation (1) is the sum of the electron and ion contributions, p = n(Ti + Te) with temperature in units of energy. Drag between
electron and ion flows is represented by the electrical resistivity (g), and the stress tensor P is a function of flow-velocity
gradients.

The most important two-fluid effects for low-frequency dynamics result from the Hall term, J � B/ne that is part of
the electric field relation in the right side of Eq. (4) and from the gyroviscous stress that is part of P. The latter can be
expressed as
Pgv ¼
nTi

4Xi
½b̂�W � ðIþ 3b̂b̂Þ � ðIþ 3b̂b̂Þ �W� b̂�; ð7Þ
where Xi = eB/mi is the ion cyclotron frequency, b̂ ¼ B=B, I is the identity tensor, and W is the traceless rate-of-strain tensor
W ¼ rV þrVT � 2
3

Ir � V: ð8Þ
More realistic orderings for the nonlinear dynamics of interest have thermal speeds larger than the flow speeds [1], which
introduces additional stresses that are associated with heat flows [31]. The simpler system considered here is, nonetheless, a
starting point for addressing nonlinear two-fluid dynamics and includes the most significant effects on stiffness for numer-
ical algorithms. In the same spirit, the last term in (4) represents part of the electron inertia effects in the generalized Ohm’s
law. This term and the missing advective part, which scales as kV/x relative to this term (where k and x are wavenumber
and frequency, respectively), may be quantitatively important for magnetic reconnection, depending on collisionality and
the rate of reconnection. We also note that ion diamagnetic drift does not appear explicitly in our system for low-order fluid
moments but is part of the ion contribution to the center-of-mass flow velocity. Modeling the net drift of ions, including
drifts for electric-potential profiles, in plasma confinement configurations requires additional information for transport pro-
cesses that would need to be added through momentum–density source terms or as background flow.

Our temporal algorithm for solving initial-value computations with Eqs. (1)–(7) has been presented in Refs. [6,20]. Similar
to our MHD algorithm [17], the semi-discrete equations have V defined at integer time-levels and B, n, and Ta defined at half-
integer levels:
mnjþ1=2 DV
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where superscripts indicate time-level indices, D indicates the change over a step, and over-bars indicate the average of the
beginning and end of a step. The semi-implicit operator for stabilizing low-frequency waves is the same used for MHD,
LðDVÞ ¼ C0
1
l0
½r �r� ðDV � BÞ� � Bþ J�r� ðDV � BÞ þ r DV � rpþ 5

3
pr � DV

� �� �
þ C1pnlr2DV; ð13Þ
where C0 is a coefficient for the ideal-MHD force operator, and C1 is a coefficient for the Laplacian part with pnl the ‘nonlinear
pressure’, which is typically orders of magnitude smaller than the total pressure, as described in Ref. [17]. The implicit treat-
ment of anisotropic thermal conduction for the heat-flux vectors qa is also described in Ref. [17]. Terms in (9)–(12) are time-
centered for each respective advance (including coefficients in operators) by the temporal staggering, by averaging previ-
ously advanced fields, and by implicit computation. The only algebraically nonlinear implicit terms are the advective term
in (9) and the Hall term in (12). Both are quadratic (in DV for one and in DB for the other), so Newton iteration is
straightforward.
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Our focus here is on the properties of the semi-discrete system equations (9)–(13). Nonetheless, a couple of points regard-
ing its implementation in the NIMROD code are relevant. First, the implementation uses the implicit diffusive correction,
�rr � B, for magnetic divergence error, as described in Ref. [17]. In addition, numerical smoothing of the particle number
density is accomplished with either an artificial Fick’s law term or a hyper-diffusivity, �r4n added to Eq. (10). The electron
inertia term in Eq. (12) serves important numerical roles, regardless of its physical importance in an application. In the ma-
trix for the advance of B that results from spatial discretization, the electron inertia provides a symmetric contribution.
Including it provides the R-mode branch with a resonance at the electron cyclotron frequency, which limits the range of fre-
quencies at sufficiently large wavenumbers. Consequently, this term helps limit the condition number of the matrix for the
advance of B as spatial resolution is increased, even when the physically correct value of me is used. Another point regarding
the matrices is that they are not symmetric. They are solved iteratively with the general minimal residual method (GMRES)
[32] instead of the conjugate gradient method, and our block-based preconditioning strategy relies on the SuperLU libraries
of direct solvers for sparse matrices [33]. Finally, the finite element/finite Fourier series spatial representation is largely the
same as in Ref. [17]; though, the nodes of the Lagrange polynomials now coincide with the Gauss–Lobatto–Legendre
quadrature nodes, so that the elements are spectral [34].

3. Analysis

Our numerical analysis considers the linear response for plane waves in an infinite uniform background. In some cases, we
include the effects of uniform background electron flow that differs from background ion flow (Ve0 – V0Þ in the advance of
magnetic field. This provides an important check on electron flow, but it is ad hoc in that the associated current density is
not consistent with Eq. (5) and uniform background magnetic field. We also simplify temperature evolution such that both
the background and perturbed electron pressures are fixed fractions (fe) of the total background and perturbed pressures,
respectively. For the normal modes of our system, scaling fe from 0 to 1 only changes the influence of the ion gyroviscous term.

In the following subsection, we find eigenvalues of the implicit leapfrog advance explicitly for limited systems and
numerically for the full system. The second subsection considers differential approximation for specific modes to provide
greater insight on the stability properties of the system.

3.1. Plane-wave modes of the algorithm

Our plane-wave analysis considers all perturbed fields to vary as eiky with the background magnetic field in the y–z plane.
Further simplification results from assuming adiabatic responses with the same ratio of specific heats (C) for both species.
This allows us to combine the perturbed number density and temperature equations into a perturbed pressure equation. The
algebraic state vector then has three complex coefficients for velocity, two for magnetic field after applying the divergence
constraint, and one for pressure. We normalize B with respect to the background magnitude B0, V with respect to the Alfvén
speed vA = B0 (l0mn)�1/2, time with respect to X�1

i , and length with respect to the ion skin depth di ¼ cx�1
i , where the ion

plasma frequency for singly charged ions is defined by x2
i ¼ ne2=e0mi. We also define b � l0P0=B2

0. Using single-underline
italics to indicate algebraic vectors of coefficients and double-underline italics for matrices – to distinguish them from
the vector and tensor fields in the PDE equations – the linear system is
1
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where v = (vx,vy,vz)T and b = (bx,bz)T; hv, hb, hp, and hg are temporal centering coefficients for advection and resistive diffusion;
and Dg � g=l0d2

i Xi. The orientation of the background magnetic field appears through the cosine (c) and sine (s) of the angle
it makes with respect to ŷ. The matrices that represent the semi-implicit operator and the gyroviscous force are
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CA ð17Þ
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Properties of the advance are determined from the eigenvalues (k) of the time-step operation that is defined by combining
Eqs. (14)–(18). With the staggering, the modes satisfy
v jþ1

bjþ3=2

pjþ3=2

0
B@

1
CA ¼ k

v j

bjþ1=2

pjþ1=2

0
B@

1
CA; ð19Þ
and there as many as six nontrivial modes for each set of physical and numerical parameters. In the following text and fig-
ures, it is convenient to relate time-step eigenvalues to numerically predicted frequencies and growth rates using k = e�ixDt.
Note that Im(x) > 0 indicates numerical instability for a physically stable system.

Before evaluating the full dispersion relation numerically, we consider the properties of the system in different limits. For
sufficiently large wavenumber and small b, the ions do not respond, and nontrivial electron-MHD modes result from the cou-
pling of bx and bz. The two eigenvalues of the dispersion relation from Eq. (15) are
k ¼
1þ me

mi
k2 � ikDtð1� hbÞVe0 	 i k2cDt

2 � Dgk2Dtð1� hgÞ

1þ me
mi

k2 þ ikDthbVe0 
 i k2cDt
2 þ Dgk2Dthg

ð20Þ
In the absence of resistive diffusion, and with centered advection (hb = 1/2), the numerator and denominator are complex
conjugates. Numerical stability in the sense of jkj 6 1 is expected and achieved for all values of Dt in this case, because it
limits to a Crank–Nicolson advance. The algorithm is also numerically stable with resistive dissipation, provided that
hg P 1/2.

The MHD limit of Eqs. (14)–(16) is obtained at small wavenumber (normalized-k << 1) with cold ions (fe ? 1) and no
background current density. Here, the gyroviscous term in (14) and the Hall and electron inertia terms in (15) are negligible.
The primary difference between this limit of our system and other semi-implicit algorithms for MHD [15,17,35] is the use of
implicit advection instead of explicit predictor–corrector or upwinding. For convenience, we use the same centering coeffi-
cient for advection in all equations, hv = hb = hp = h. Substituting (15) and (16) into (14) provides a homogenous algebraic sys-
tem for v, where the first row and column are identically zero, except for the diagonal element. Setting this diagonal element
to zero provides the dispersion relation for the shear Alfvén mode. The determinant of the remaining symmetric 2 � 2 subm-
atrix provides the dispersion relations for the fast- and slow-wave branches. Their factoring is not readily apparent when
Dg – 0, but the numerical dispersion relation has a form that mimics the analytical system with nonzero resistivity. When
Dg = 0, the dispersion relation for each of the three factored modes has the form
½ðk� 1Þð1þ inhÞ þ in�2

C0ðk� 1Þ½ðk� 1Þð1þ inhÞ þ in� þ k
þ v2 ¼ 0; ð21Þ
where n � kDtV0, v � kDtv/, and the normalized shear-, fast-, and slow-wave phase velocities are given by
v2
/ ¼

c2

1
2 1þ Cb	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðs2 � c2ÞCbþ C2b2

q� �
:

8<
: ð22Þ
Eq. (21) is quadratic in k � 1, and the discriminant simplifies to a real number for centered advection, h = 1/2:
k� 1 ¼
�½ð1þ inC0Þv2 þ 2in� n2� 	 v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 4C0 � n2C2

0Þv2 � 4� n2
q

2ð1þ in=2Þ½C0v2 þ ð1þ in=2Þ� : ð23Þ
As in semi-implicit computation without flow, setting the coefficient C0 P 1/4 leads to jkj = 1 independent of Dt. With C0 = 1/
4, the leading terms of (23) for a small-Dt expansion produce
k ¼ 1� in	 iv� n2=2� v2=2	 nvþ OðDt3Þ; ð24Þ
which is the expansion of e�ixDt to second order for xDt = n 
 v. Evaluation with h – 1/2 leads to instability, as shown below
with numerical evaluation.

A third limit is for parallel propagation (c ? 1, s ? 0) without flow or dissipation but considering all wavelengths and
b-values. Electron inertia does not change the stability result and is dropped for clarity. The slow wave factors readily in this
case. Using v = kDt (the CFL number for Alfvén waves with our normalization), defining bi � (1 � fe)b, and setting the remain-
ing factor of the dispersion relation to zero produces
ðk� 1Þ2ð1þ C0v2Þ 	 iðk2 � 1Þ kv
2

� �
½1þ C0v2 þ bi� � ðkþ 1Þ2 k2v2bi

4

 !
þ kv2 ¼ 0: ð25Þ
This relation leads to four circularly polarized waves [6] that are influenced by the Hall term in Ohm’s law and gyroviscosity
in the flow-velocity equation. The coefficient of k2 is the complex conjugate of the coefficient of k0, and the k1-coefficient is
real. Applying the same condition of C0 P 1/4 makes the advance stable and free of numerical dissipation for all Dt-values
across the transition from MHD to electron-MHD. With C0 = 1/4, the eigenvalues are
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4


 � ; ð26Þ
where all four sign combinations are solutions. Expanding (26) in powers of v agrees with e�ixDt for the analytical eigen-

values, x ¼ 	k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2ð1� biÞ

2
=4

q
	 k2ð1þ biÞ=2, through second order in Dt.

Having considered limits of the implicit leapfrog, we turn to numerical evaluation of the eigenmodes for more general
cases. Here, we evaluate coefficients of matrices from Eqs. (14)–(16) for various sets of parameters. The corresponding
time-step matrix in each case is constructed by applying the matrix that represents the explicit computations for one step
to the result of a previous step (or to the identity matrix for the first step) then applying the inverse of the matrix represent-
ing the respective implicit computations. With the implicit leapfrog, there are three such steps, one to advance v, one to ad-
vance b, and one to advance p. With Crank–Nicolson, there is only one step to advance all fields. The complex eigenvalues of
the time-step matrix are then determined with LAPACK routines [36]. The argument of an eigenvalue and the logarithm of its
modulus provide predictions for frequency and growth rate, respectively.

We first confirm the influence of the coefficient of the semi-implicit operator and the centering parameters in more gen-
eral conditions than the limiting cases. The background magnetic field is placed at a 45� angle with respect to k, b = 0.15,
C = 5/3, fe = 1/2, me = 0, and background ion and electron flows are 20% and 30% of the Alfvén speed, respectively. In
Fig. 1(a), we show numerical results for the predicted Re(x) with Dt = 1, centered advection hv = hb = hp = h = 1/2, C0 = 1/4,
and no resistive dissipation. Waves propagating in the positive and negative y-directions are not symmetric about
Re(x) = 0 due to the flows. Numerical dispersion that is characteristic of implicit methods for waves is evident in the fast
modes at large-k. Results for Im(x) for these parameters (Fig. 1(b)) show only roundoff error from the computations. Increas-
ing both Dt and the maximum k-value to 1000, for example, also produces only roundoff error for Im(x), confirming numer-
ical stability for arbitrarily large Dt-values. Fig. 1(c) and (d) show results for Im(x) and Dt = 1 when C0 < 1/4 and h > 1/2,
respectively. The nontrivial Im(x)-values that are greater than zero indicate numerical instability. Advection with h < 1/2
also shows numerical instability.1 Results in Fig. 2 show the effects of resistive dissipation with Dg = 0.2 and parameters that
are stable for the ideal system. There is only damping with centered resistive dissipation, hg = 1/2 (Fig. 2(a) and confirmed with
large Dt and k-values), but numerical instability is encountered for k > 2.6 with hg = 1/4 (Fig. 2(b)).

Eigenmode results for numerically stable parameters with Ve0 ¼ V0 provide useful verification exercises for the NIMROD
implementation. With sufficient spatial resolution, NIMROD and Eqs. (14)–(16) are expected to produce the same behavior at
any Dt-value. We consider nearly parallel propagation with k̂ � b̂ ¼ 0:992 and b = 0.15 and nearly perpendicular propagation
with k̂ � b̂ ¼ 0:125 and b = 0.6. The time-step values of Dt = 0.5 for the first set and Dt = 1.5 for the second are chosen such
that xDt 6 2 for the fastest waves. Spatial truncation error is made negligible in the NIMROD computations by using four
finite elements with basis functions of polynomial degree six along the direction of propagation. Each computation is initial-
ized from one eigenvector found from the LAPACK analysis, and the eigenvectors reflect the temporal shift between flow
velocity and the other components at finite Dt-values. The NIMROD results are checked for maintaining a single sine wave
in each physical component, and the frequency is measured from 10 wave periods. The agreement shown in Fig. 3 confirms
the implicit leapfrog implementation for these conditions. The results have been computed with Ve0 ¼ V0 ¼ 0:2, so the
positive and negative-going waves are again not symmetric about Re(x) = 0. In fact, the negative-going slow wave and
kinetic Alfvén wave (KAW) in Fig. 3(b) are carried in the positive direction by the large flow for at least some of the k-values.
For nearly parallel propagation, there is significant numerical dispersion in the fast whistler wave (Fig. 3(a)), which behaves
analytically as x � k2 for k > 1. There is also significant numerical dispersion in the fast compressive wave in Fig. 3(b), which
is not dispersive analytically for this range of wavenumber. However, what is important here is that the implementation
agrees with the analysis.

We also compute numerical eigenvalues to compare the accuracy of the implicit leapfrog algorithm with that of the time-
centered Crank–Nicolson algorithm for the full system. The temporal staggering makes the implicit leapfrog consistent of
order Dt2, but Ref. [37] emphasizes that any form of splitting for problems with multiple time-scales may lead to loss of
accuracy when Dt is larger than the time-scale of each process. Comparison of results in Fig. 4(a) and (b) with Dt = 0.2
and Dt = 0.5, respectively, shows that there is significant numerical dispersion in the fast whistler mode for both algorithms
where xDt > 1. The accuracy of the intermediate-frequency wave is comparable for the two algorithms through the transi-
tion at k ffi 1.2, where the ions lose magnetization in the two-fluid model. For the lowest-frequency mode, we expect a tran-
sition to the slow circularly polarized mode that is influenced by gyroviscosity. The implicit leapfrog forces Re(x) for this
mode toward zero at large-k, particularly for the largest-Dt case shown in Fig. 4(c), while the Crank–Nicolson algorithm
is more accurate. For this mode, effects from the ion cyclotron resonance appearing through the two-fluid Ohm’s law are
important for the transition. However, the relevant ion motion with the implicit leapfrog algorithm is suppressed for
kDt P 1. Results for nearly perpendicular propagation at Dt = 0.3, Dt = 1.5, and Dt = 4 in Fig. 5 show comparable accuracy
for the two algorithms for all modes throughout the wavenumber range.
lysis for the two-fluid model with predictor–corrector advection that is successful for semi-implicit MHD [34] shows numerical instability for
gths approaching the ion skin depth, essentially independent of Dt.
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3.2. Differential approximation

The von Neumann analysis described in the previous section shows that the algorithm can be numerically unstable when
advection is not centered and with forward differencing of resistive diffusion. With centered advection, Hall, and gyroviscous
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terms, the results indicate the criterion C0 P 1/4 for stability at arbitrarily large Dt-values, which is the same criterion for the
semi-implicit method applied to a basic hyperbolic wave equation [27]. To provide insight regarding these results and
increase confidence that our set of numerical evaluations are representative, we turn to differential approximation. We
consider the same normalized linear system described for Section 3.1 and apply differential approximation in limits that
illustrate the stability properties. We follow the prescription of Ref. [27] keeping terms that require no additional initial con-
ditions relative to the original PDE problem. A possibly unique aspect, however, is to address the temporal staggering
through synchronization terms in the differential approximation. We find this approach to be more tractable and productive
than expanding the entire system about a single time, which is illustrated in Appendix B for a basic hyperbolic system.

To appreciate the effects of the centering coefficients, we consider propagation perpendicular to the magnetic field in the
limit of low wavenumber, Ve0 ¼ V0, and b ? 0. The algorithm for the normalized linear system reduces to
1� Dt2C0
@2

@y2

 !
v jþ1 � v j

Dt

� �
¼ �V0

@

@y
½hvv jþ1 þ ð1� hvÞv j� � @

@y
bjþ1=2

; ð27Þ
bjþ3=2�bjþ1=2

Dt ¼ �V0
@
@y ½hbbjþ3=2 þ ð1� hbÞbjþ1=2� þ Dg

@2

@y2 ½hgbjþ3=2 þ ð1� hgÞbjþ1=2� � @
@y v jþ1; ð28Þ
where v refers to just the y-component of flow velocity, and b is just the z-component. We expand v in time about t1/2 = (j + 1/
2)Dt and b about t1 = (j + 1)Dt. Thus, while there are no truncation errors from the last terms on the right sides of Eqs. (27)
and (28), they are expanded to account for synchronization of the two differential equations. Keeping the terms that require
no additional initial conditions, we have
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; ð30Þ
showing explicitly – and only once – the times at which fields and derivatives are evaluated. Apart from the term for the
semi-implicit operator, the system (29) and (30) is the C-form of the first differential approximation [26] when not all of
the numerical h-coefficients are set to 1/2.

We first consider the effects of varying hg simply by moving the resistive truncation term to the left side of Eq. (30). For a
bounded system with homogeneous Dirichlet or Neumann boundary conditions, the operator acting on the @b/@t is positive
when hg P 1/2 in the sense that
Z

b 1� DtDg hg �
1
2

� �
@2

@y2

" #
@b
@t

dy ¼ 1
2

d
dt

Z
b2 þ DtDg hg �

1
2

� �
@b
@y

� �2
" #

dy; ð31Þ
and the integral on the right is positive for nontrivial fields. Thus, the effect of backward differencing is to numerically in-
crease inductance. In contrast, the integral may be nonpositive with forward differencing for sufficiently large Dt-values, in
which case the differential approximation is an ill-posed equation, hence the method is numerically unstable. We will not
include resistivity throughout, but the semi-implicit operator has a similar role in keeping the effective operator for inertia
positive [15,27].

The significance of centering advection is found by considering Eqs. (29) and (30) through order Dt, i.e. the first differential
approximation when hv, hb – 1/2. Here, we set hg = 1/2 for tractability. Substituting v = (Z+ + Z�)/2 and b = (Z+ � Z�)/2 with new
variables for the sum (Z+) and difference (Z�) of v and b leads to two differential equations that can be written compactly as
@Z	
@t
¼ �V0

@

@y
Z	 


@

@y
Z	 	

Dg

2
@2

@y2 ðZþ � Z�Þ

þ Dt
2
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0 	 V0Þðhv þ hb � 1Þ @
2

@y2 Z	 �
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2
½V2
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 V0ðhb � hv þ 1Þ þ 1� @
2

@y2 Z
 ð32Þ

þ DgDt
2

1
2

 V0 hb �

1
2

� �� �
@3

@y3 ðZþ � Z�Þ:
The terms of order Dt0 represent two waves that propagate in opposite directions relative to the background flow with
coupling through resistive dissipation. The first term of order Dt is diffusive when its coefficient is positive but leads to
an ill-posed problem when its coefficient is negative. For flow speeds that are smaller than the wave speed, which is unity
after our normalization, the sign of the coefficient is different for the two different waves, and one response is numerically
unstable if hv + hb – 1. This agrees with our finding from von Neumann analysis that either forward or backward differencing
in all equations is unstable. With flow speeds larger than the wave speed, Eq. (32) predicts damping for backward differenc-
ing, and this has been confirmed with numerical evaluation of eigenvalues for V0 > 1. The second term of order Dt includes
truncation errors that can be eliminated with hv = hb. Together, the findings lead to the conclusion that centered advection for
all advances is needed. The remaining terms of order Dt in Eq. (32) result from synchronization and are not indicative of first-
order accuracy.

We also use Eqs. (29) and (30) to examine the compatibility of centered advection and the semi-implicit operator. Here,
we set Dg = 0 and keep the term of order Dt2. Differentiating Eq. (29) in time and Eq. (30) in space to eliminate the first
temporal derivative of b leads to the intermediate step
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Using (29) to replace the spatial derivative of b in the last term and a temporal derivative of Eq. (30) to eliminate b leads to
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Similar to the centering coefficient for the implicit resistive diffusion, this wave equation has a positive operator acting on its
highest temporal derivative for all Dt-values when C0 P 1/4. Considering infinite or periodic systems, where Fourier expan-
sion is appropriate, solutions of the characteristic equation for each wavenumber,
xk ¼
kV0 1þ C0

2 k2Dt2

 �
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are real for all Dt-values when C0 P 1/4. Centered advection therefore maintains the dissipation-free property of the semi-
implicit advance, which is also evident from Eq. (23) and the results shown in Fig. 1(b).

With this approach, we are also able to see how physically dispersive contributions are compatible with the semi-implicit
operator when they are centered in the advances of the respective fields. We consider parallel propagation in the limit
Ve0 ¼ V0 ¼ 0 and b ? 0 without restricting to low wavenumber. Here the difference equations simplify to
1
Dt
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where the vectors v and b have x- and z-components. The differential approximation requiring the same initial conditions as
the original differential equation is
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With manipulations that are similar to the previous example of MHD with flow, we find the wave equation
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More boundary conditions would be needed for this equation than for the original PDE, but with homogeneous Dirichlet and
Neumann conditions, the spatial operator acting on this highest temporal derivative is again positive for C0 P 1/4. Electron
mass contributes to this property but is not required. With Fourier expansion in space, the solutions of the characteristic
equation for x2

k are real and positive for C0 P 1/4. Propagation without damping or instability is again consistent with
the findings of Section 3.1.

4. Linear benchmark and example nonlinear application

The analysis of Section 3 confirms critical numerical stability properties of the implicit leapfrog algorithm and pro-
vides information on accuracy. However, plane-wave propagation in uniform plasma is not representative of applications
of interest. Here, we consider a two-dimensional linear tearing instability in slab geometry and present a nonlinear
three-dimensional application to the internal kink mode in toroidal geometry. Parameters in this section are in MKS
units.

4.1. Linear tearing instability

When computed with experimentally relevant conditions, tearing instabilities exercise an algorithm’s ability to repro-
duce balances over multiple temporal and spatial scales. Like other MHD instabilities, they are driven by gradients in the
parallel current density profile or in the pressure profile. The eigenfunctions extend over macroscopic scales but are sensitive
to a resonance condition at the surface where k � B0 = 0, k being the wavenumber vector with respect to the periodic coor-
dinates. In the vicinity of the resonance, rapid variations in the direction normal to the surface allow the mode to reconnect
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magnetic field-lines, even in high temperature plasma where resistivity is small. Away from this surface, bending of mag-
netic field provides a restoring force that is analogous to the shear Alfvén wave response. The slow evolution regulated
by reconnection allows forces to balance on the macroscopic scale; hence, the multi-scale nature of the instability. The
two-fluid model allows electron flows to separate on an intermediate scale through forces that govern the dispersive whis-
tler and KAW waves [38], allowing faster reconnection. Recent analytical theory [3,39] clarifies transitions across the differ-
ent parameter regimes. The derivation in Ref. [3] uses a separation between the reconnection and electron scales and
between the electron and macroscopic scales. It is valid across the entire ranges of b and the instability parameter D

0
, but

the use of two asymptotic matchings precludes the MHD limit, where the reconnection scale extends to the ion scale.
Ref. [39] uses only one matching by assuming a minimal b and allows for the transition to MHD with decreasing di. Both
derivations are useful for our benchmarking.

The two theories use equilibria where the in-plane component of B0 varies as a hyperbolic tangent, ByðxÞ ¼ By1 tanhðx=LÞ,
and the domain in the inhomogeneous direction is not bounded. The pressure is uniform, so equilibrium diamagnetic drift
effects are not considered. With this class of equilibria, the instability parameter has the simple form D

0
L = 2/kL � 2kL. This is

convenient analytically, but NIMROD computations must approximate the domain with walls at finite locations jxj > L.
Through experimentation, we find that �6L 6 x 6 6L is sufficient, but this implies a fourth spatial scale in the computational
domain. For comparison with Ref. [3], our largest-b computation has the reconnection scale D

0
d2 [40] nearly 1000 times

smaller than L, where d is the generalized skin depth
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

e þ g=l0c
q

with c being the growth rate. To obtain spatial conver-
gence, we use meshes of up to 240 biquartic elements in the x-direction with packing near the resonant surface such that
the smallest elements have width comparable to D

0
d2.

Converged growth rates from NIMROD computations are compared with the two theories in Fig. 6. The equilibria have a
large guide field (Bz) that is 25 or 50 times larger than By1 ; though, this is not required for the more recent theory. For the
first set, kdi is fixed at 2.3, and pressure is varied to scan the ‘sound gyroradius,’ qs ¼ di

ffiffiffiffiffiffiffi
Cb

p
, which governs the transition

from the shear Alfvén wave to the KAW response. The comparison with solutions of Eq. (73) of Ref. [3] is shown in Fig. 6(a)
for computations with and without finite electron inertia. At small values of kqs, the computations show the transition
between resistive MHD and two-fluid reconnection. At large kqs, the combined effects of compression and diffusion of the
out-of-plane component of perturbed magnetic field limits the growth rate – see Ref. [3]. Quantitative comparison at interme-
diate to large kqs is influenced by the marginal scale separation of d/L ffi 8% that results with S = l0vA/gk = 1.79 � 107. The less
restrictive assumption of S�2/5 << b required for the derivation of Ref. [39] is well satisfied in the computations presented in
Fig. 6(b), where S = 3.50 � 107 and b = 0.05 (with the definition from Section 3). The transition from MHD is described by
Eqs. (85–87) of Ref. [39], and the quantitative agreement of the computations is within 2.3%. All computations in this second
set include electron inertia, but de is at least an order of magnitude smaller than d and does not affect the growth rate.

A representative eigenfunction from the kdi = 0.238 computation of Fig. 6(b) is shown in Fig. 7 to display the range of spa-
tial scales. The component of perturbed B in the direction of inhomogeneity shows the influence of the equilibrium and
boundary scales, in addition to evidence of reconnection by its nonzero value at the resonant surface, x = 0. Ion and electron
flows that are perpendicular to the guide field show characteristic two-fluid separation below the x = qs scale; qs = 0.09L in
this case. Within the reconnection scale of D

0
d2 = 0.007L, current density parallel to the guide field is associated with the

localized resistive magnetic diffusion for reconnection.
The temporal convergence properties of this calculation show second-order accuracy for centered dissipation, hg = 1/2,

and sufficiently small time-step. The error relative to a reference computation is shown in Fig. 8. As Dt is increased from
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the converged limit, the computed growth rate is initially below the converged value. At large Dt-values, the error is positive,
hence the break in the trace. For accuracy of order 1%, the implicit leapfrog needs Dt ffi 0.03c�1 for this two-fluid computa-
tion, which is similar to the performance of our semi-implicit algorithm on a resistive MHD tearing mode in cylindrical
geometry [17]. At the largest Dt-values, distortion of the eigenfunctions is most evident in the perpendicular ion flows near
the ion-separation scales. When scaling by the peak value for the electron velocity, the perpendicular ion velocity in the larg-
est-Dt computation is approximately 2.6 times smaller than what is shown in Fig. 7(b). This is likely due to the effect of the
semi-implicit operator in the flow velocity advance. The scaled trace of the perpendicular electron velocity is indistinguish-
able from the small time-step result, however, so the magnetic field is unaffected. Lastly, although the spatial resolution in
our computations is finer, we note that minimal resolution of the tearing region is some fraction of D

0
d2. Fast compressional

waves of the system would traverse these smallest computational scales more than 106 times during a period of
Dt ffi 0.03c�1.

4.2. Nonlinear internal kink

As an example three-dimensional application of the algorithm, we consider the nonlinear evolution of the internal kink
mode in a tokamak. An important result from reduced two-fluid modeling with helical symmetry in cylindrical geometry is
that the exponentiation rate of kinetic energy increases during the nonlinear phase while the geometry of the reconnection
changes from a current-sheet to an ‘X-point’ [41]. This result has recently been confirmed in helically symmetric computa-
tions with a nonreduced model [42], which can reproduce all shearing and compressive responses. Here, we show a similar
computation in toroidal geometry, which breaks the helical symmetry. The configuration has a circular cross-section with
moderate aspect ratio R/a = 4, where R and a are the major and minor radii of the torus, respectively. Like Ref. [41], the
MHD equilibrium has uniform pressure to avoid equilibrium diamagnetic effects, and b = 2.5 � 10�3 from electron thermal
energy only. The current profile is described by RB/ = 3.44 + 0.12(1 �W) + 0.064W(W � 1), where W is the normalized poloi-
dal flux function that is zero at the magnetic axis and unity at the wall. This makes q(0) = 0.97 and q(1) = 1.61, where q(W) is

the magnetic winding profile. Physical parameters are chosen such that S ¼ B/ð0Þa2g�1R�1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l0=mn

p
¼ 2:35� 106 and

Pm = l0m/g = 0.1, where m is the coefficient for isotropic viscous stress (P = �mmnW). The scales for two-fluid effects are
di = 0.22a, de = 0.005a, and qs = 0.14a.

Our simulation results show that the increase in exponentiation rate of kinetic energy predicted in simplified geometry
also occurs in toroidal geometry. Fig. 9 shows this nonlinear growth rate as a function of time for two simulations. The
transition from current-sheet to ‘X-point’ reconnection is evident from the current density contour plots of Fig. 10. Both sim-
ulations use spectral elements with basis functions of polynomial degree eight. The lower resolution computation has a
packed 20 � 20 mesh with toroidal Fourier harmonics 0 6 n 6 42, and the higher resolution computation has a packed
24 � 32 mesh with 0 6 n 6 85.

The higher resolution computation also uses a more restrictive time-step control as the configuration loses toroidal sym-
metry, and this is the primary difference between the evolutions shown in Fig. 9. As described in Ref. [17], the implemen-
tation of the semi-implicit operator uses the evolving symmetric component of the magnetic field, current density, and
pressure in the ideal-MHD force computation, and pnl is determined from pressure variation over the toroidal direction.
As a configuration loses toroidal symmetry, there are two sources of error relative to expectations from analysis. The first
is that the symmetric projections of B, J, and p do not represent the asymmetric state of the system, so the first part of
the semi-implicit operator does not fully represent ideal-MHD responses to perturbations from the actual state. The second
is that pnl is nonzero, and the Laplacian part of the operator affects accuracy. The internal kink computations are started with
accurate linear growth at Dt = 4.69sA, where the Alfvén time is defined as sA � R

ffiffiffiffiffiffiffiffiffiffiffiffiffil0mn
p

=B/ð0Þ. To achieve convergence, the
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Fig. 10. Contours of constant current density parallel to B in the vicinity of the resonance and at a plane of fixed toroidal angle (a) before the increase in
growth rate, t = 4.67 � 10�3sr, and (b) after the increase, t = 4.95 � 10�3sr.
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time-step is dynamically reduced as pnl increases, and at the time shown in Fig. 10(b), the time-step is 32 times smaller than
its initial value. This is still more than 1000 times larger than an explicit stability limit based on compressive waves. Here,
the maximum amplitude of the perturbed magnetic field is 1.3% of the symmetric component, so pnl is less than 0.02% of the
total pressure. Testing the impact of the Laplacian part of the semi-implicit operator by assigning C1pnl to 0.01% of the total
equilibrium pressure reduces the linear growth rate of the two-fluid n = 1 mode by 21% at Dt = 4.69sA, by 2.3% at Dt = 0.47sA,
and by less than 1% at Dt = 0.15sA. Since running the nonlinear computations, we have found that the two-dimensional nat-
ure of the first part of the semi-implicit operator is also a significant source of error at larger-Dt values. Improvement is a
matter of implementation. The implicit-leapfrog algorithm and semi-implicit MHD computations can use three-dimensional
states in the first part of the semi-implicit operator, and the Laplacian part of the semi-implicit operator is then unnecessary.
5. Discussion and conclusions

The plane-wave analysis of Section 3 establishes the most important properties of the staggered implicit algorithm for
solving initial-value problems with two-fluid plasma models. First, temporally centered advection in the advance of each
field is compatible with the semi-implicit operator for MHD waves in that numerical stability can be achieved without con-
dition on time-step. Second, the Hall electric field and gyroviscosity are also compatible as implicit terms that are centered in
the magnetic-field and flow-velocity advances, respectively. Third, implicit resistive dissipation with centered or backward
differencing does not adversely affect numerical stability. Fourth, in the absence of physical dissipation, the algorithm does
not introduce numerical dissipation. This is important for simulating high-temperature plasma, where physical dissipation,
such as electrical resistivity, is small but important for multi-scale phenomena like magnetic reconnection.

Differential approximation supports the major findings of von Neumann analysis and explains the unexpected result that
implicit advection with backward differencing is numerically unstable with the staggered algorithm. Our approximation
uses the approach of Ref. [27] in dropping terms that require additional initial conditions, but we find it useful to expand
different equations about different times by including synchronization effects in terms that couple the equations. The
numerical requirement for stability is apparent from a change of variables for a simplified system that describes two waves
propagating with respect to flow. The first differential approximation shows that one of the two equations is ill-posed for
forward differencing of advection and the other is ill-posed for backward differencing if the flow speed is less than the wave
propagation speed. Compatibility of the semi-implicit operator for MHD with centered advection and with the Hall term and
gyroviscosity is shown from wave equations for relevant systems, (33) and (39), respectively. The spatial differential oper-
ator acting on the highest temporal derivative is positive for all Dt-values, provided the familiar condition of C0 P 1/4 on the
coefficient of the semi-implicit operator. The semi-implicit operator, therefore, retains its role in keeping the effective inertia
positive for all wavenumbers in two-fluid computations.

With physical dissipation terms temporally centered, the algorithm has second-order consistency. Numerical evaluation
for plane waves of the two-fluid model shows that the overall accuracy of the implicit leapfrog at large Dt-values is compa-
rable to that of the Crank–Nicolson method for all waves except the slow parallel mode that is affected by the ion cyclotron
resonance. Here, we see the influence of temporal splitting that is described in Ref. [37]. This particular effect is acceptable
for magnetic confinement and other applications where instabilities are most sensitive to distortions that are nearly perpen-
dicular to the magnetic field. Moreover, ion kinetic effects that are not included in the fluid model strongly influence these
parallel modes at large wavenumber.

The tearing-mode tests of Section 3.1 provide a more realistic confirmation by converging at Dt-values that are typical for
semi-implicit MHD accuracy and by reproducing MHD to two-fluid transitions predicted by analytical theory. Accuracy of
approximately 1% in the growth rate for nonideal modes requires Dt ffi 0.03c�1, likely due to distortion of the flow velocity
from the semi-implicit operator at larger Dt-values. This stabilizing term is based on the linear ideal-MHD force operator, as
in Refs. [16,17], and is self-adjoint. It does not represent all physical effects that alter the Lorentz and pressure-gradient
forces over a time-step, but our analyses and test results show that it provides reasonably good accuracy at useful Dt-values
as part of the full implicit leapfrog algorithm. In comparison, the Crank–Nicolson method balances all terms [37] and has
comparable accuracy with Dt approximately an order of magnitude larger. The computational cost, however, is a larger
and more ill-conditioned matrix that must be solved to advance the system for linear computations or to complete each iter-
ation for a nonlinear computation.

Finally, we note that the NIMROD implementation of the algorithm has been successfully applied to linear two-fluid inter-
change with gyroviscosity [43], two-dimensional nonlinear modeling of a magnetic reconnection experiment [44], and spon-
taneous rotation in the field-reversed configuration [45]. Recent updates to preconditioning and parallel scaling have
improved computational efficiency for nonlinear three-dimensional applications, such as the internal kink mode of Section
4.2. Ongoing development includes a semi-implicit operator where the ideal-MHD force operator is based on time-dependent
three-dimensional fields to alleviate the dominant accuracy limitations on time-step found from the kink computations.
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Appendix A. Predictor–corrector hall advance

Ref. [19] proposes a self-adjoint fourth-order spatial differential operator for the magnetic-field advance of the Hall-MHD
system, instead of making the Hall term time-centered. Expressing Eqs. (8) and (9) of Ref. [19], which consider the ideal
b ? 0 limit with uniform and constant number density, in our dimensionless form, we have
2 The
ð1� Dt2C2
Ar2ÞDV ¼ DtJjþ1=2 � Bjþ1=2; ðA1Þ

ð1þ Dt2ðCH � rÞ2r2ÞDB ¼ Dtr� ðVjþ1=2 � Bjþ1=2 � Jjþ1=2 � Bjþ1=2Þ; ðA2Þ
where both fields are defined at integer time-levels, e.g. DV = Vj+1 � Vj. The fourth-order differential operator on the left side
of (A2) is self-adjoint for solenoidal CH, and it serves as a semi-implicit operator for whistler waves.

The analysis in [19] uses uniform equilibrium magnetic field in the z-direction, no equilibrium flow, spatial variations of
the form eikz, and CH ¼ CHẑ. It does not provide a definition for the half-integer time-levels appearing on the right sides of
(A1) and (A2).2 If we set
v
b

� �jþ1=2

¼ k1=2 v
b

� �j

ðA3Þ
for the x- and y-components of the two fields, the eigenvectors satisfy
ðk� 1Þð1þ C2
Ak2Dt2Þv ¼ k1=2ikDtb; ðA4Þ

ðk� 1Þð1þ C2
Hk4Dt2Þb ¼ k1=2kDt iv þ

0 �k

k 0

� �
b

� �
: ðA5Þ
Dividing (A4) and (A5) by ik1/2 and relating the time-step eigenvalue to a frequency through k = eixDt reproduces Eqs. (10)–
(13) of Ref. [19]. The resulting dispersion relation determines the values of CA and CH needed for numerical stability. While
(A3) holds for analytical waves, it is not consistent with numerical methods such as Crank–Nicolson or predictor–corrector.

If a numerically stable advance can be obtained with a self-adjoint semi-implicit operator for the Hall term, an implemen-
tation may use solvers for symmetric matrices, depending on the spatial representation. We therefore consider an algorithm
with the staggering described in Section 2 and predictor–corrector steps for the Hall advance:
ð1� Dt2LÞDV ¼ DtJjþ1=2 � Bjþ1=2; ðA6Þ
DB� þ Dt2Chpr� f½r �r� ðBjþ1=2 �r� DB�Þ� � Bjþ1=2g

¼ fhDtr� ðVjþ1 � Bjþ1=2 � Jjþ1=2 � Bjþ1=2Þ;
ðA7Þ

DBþ Dt2Chr� f½r �r� ðBjþ1=2 �r� DBÞ� � Bjþ1=2g
¼ Dtr� ðVjþ1 � Bjþ1=2 � J� � Bjþ1=2Þ;

ðA8Þ
where DB* = B* � Bj+1/2, Chp and Ch are coefficients for the semi-implicit operator for the Hall term in the predictor and cor-
rector steps, and fh controls the centering of the predicted field. When applied to electron-MHD (V = 0) without equilibrium
electron flow, the time-step eigenvalues are
k ¼ 1þ 1
1þ Chv2

� �
	iv� fhv2

1þ Chpv2

� �
; ðA9Þ
where v = ck2Dt. With fh = 1/2 and Chp = Ch/4, for example, jkj 6 1 for Ch P 1/3 for all Dt-values. Numerical evaluation of
eigenvalues for the Hall-MHD system (A6)–(A8) with these parameters and C0 P 1/4 finds unstable modes (without equilib-
rium flows). Another possibility is to use the semi-implicit operator for the Hall term in the corrector step only, i.e. Chp = 0.
The electron-MHD advance is then stable and free of dissipation with fh = 1/2 and Ch = 1/4. The algorithm is also stable for the
Hall-MHD system. Unfortunately, predictor–corrector advection for equilibrium electron flow requires fh > 1/2 for condi-
tional stability, but fh > 1/2 leads to numerical instability for this Hall-MHD advance with or without electron flow.

Appendix B. Differential approximation for explicit leapfrog

Our use of differential approximation in Section 3.2 provides insight on why numerical instabilities appear with the
implicit leapfrog algorithm for certain choices of centering parameters. However, we have not used the standard P-form that
is used to judge stability in Ref. [26]. In this Appendix B, we find the P-form of the differential approximation for a basic
‘split method’ of Ref. [19] is also not fully specified.
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explicit leapfrog to find the same necessary conditions for stability that motivate a semi-implicit approach. We consider an
algorithm that is consistent of O(Dt):
v jþ1 � v j

Dt
¼ � @pj

@y
; ðB1Þ

pjþ1 � pj

Dt
¼ � @v

jþ1

@y
: ðB2Þ
The first differential approximation from expanding (B1) and (B2) about time-level j is the system
@v
@t
þ Dt

2
@2v
@t2 ¼ �

@p
@y

ðB3Þ

@p
@t
þ Dt

2
@2p
@t2 ¼ �

@v
@y
� Dt

@2v
@y@t

: ðB4Þ
The form of (B3) and (B4) with errors from temporal differencing left as derivatives with respect to time is considered the
C-form. Manipulating to eliminate temporal derivatives in terms of spatial derivatives and dropping terms of higher order
produces the P-form of the first approximation:
@v
@t
¼ � @p

@y
� Dt

2
@2v
@y2 ðB5Þ

@p
@t
¼ � @v

@y
þ Dt

2
@2p
@y2 : ðB6Þ
For solutions of the form eiky�ixt, the dispersion relation for this system has real eigenvalues x for kDt 6 2. This conditional
stability for some maximum wavenumber km on a numerical mesh is also found from Eq. (32), where the analysis uses
synchronization for the temporally staggered equations. Setting flow and resistive dissipation to zero in Eq. (32) reproduces
(B5) and (B6) with p ? b. In fact, the first-order in Dt explicit leapfrog (B1) and (B2) differs from a second-order version only
by the definitions of temporal staggering. Thus, numerical stability criteria must be the same. However, the P-form of the
staggered scheme has no low-order even spatial derivatives when both fields are expanded about the same time and does
not reveal a useful stability condition.
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